Exercice 91 page 27

[1]	Altitude (m)	0	800	1500	2000
	Pression Athm.(hPa)	1013,25	925,25	848,25	793,25

[2] (a)
$$u_1 = u_0 - 0$$
, $11 = 1013$, $25 - 0$, $11 = 1013$, 14 $u_2 = u_1 - 0$, $11 = 1013$, $14 - 0$, $11 = 1013 - 03$

- (b) à l'altitude de n mètres, on enlève à la pression $u_0 \ n$ fois 0,11 hPa. $u_n = u_0 0,11n$
- (c) à chaque étape, on enlève 0,11 à u_n donc u_n diminue. Donc (u_n) est décroissante.
- (d)

$$1013, 25 - 0, 11n \leqslant 950$$

$$-0, 11n \leqslant 950 - 1013, 25$$

$$-0, 11n \leqslant -63, 25$$

$$n \geqslant \frac{-63, 25}{-0, 11}$$

$$n \geqslant 575$$

C'est à partir de l'altitude 575 m que la pression est inférieure à 950 hPa.

107 page 29

[1] Chaque année la quantité extraite diminue de 1% donc on multiplie la quantité extraite par 0,99.

$$T_1 = T_0 \times 0,99$$

= 20000 × 0,99
= 19800

$$T_2 = T_1 \times 0,99$$

= $19800 \times 0,99$
= 19602

$$T_3 = T_2 \times 0,99$$

= 19602 × 0,99
= 19405,98

[2] Le mécanisme du calcul effectué pour passer de T_0 à T_1 est le même pour passer de T_1 à T_2 , puis de T_2 à T_3 , ..., et donc de T_n à T_{n+1} .

Donc:

$$T_{n+1} = T_n \times 0,99$$

[3] (a) 2008 correspond au terme T_{58} . à l'aide de la table de la calculatrice ou d'un tableur, on trouve :

$$T_{58} = 11165, 322$$

En 2008, on peut estimer la quantité de minerai de fer extraite à 11165 tonnes.

(b) Pour répondre à cette question, il faut additionner toutes les valeurs de la suite (T_n) de T_0 à T_{58} . On ne peut pas le faire sans tableur (il faudrait l'aide d'une formule que nous apprendrons en terminale).

On obtient 894633 tonnes.

```
[4] (a) S=20000

T=20000

n=1950

while S<1000000:

T=T*0.99

S=S+T

n=n+1

print(" le filon est épuisé en ",n)
```

(b) l'algorithme nous répond que le filon est épuisé en 2018.