3. Opérations sur les racines

Problème introductif

On souhaite résoudre le problème suivant :

Déterminer deux nombres dont la somme est 13 et le produit 20

Question 1 (10 minutes) : Si on note x et y les deux nombres recherchés, déterminer une système d'équations permettant de résoudre ce problème.

Les méthodes étudiées en classe de seconde ne permettent pas de résoudre ce problème.

Etude du cas général

On considère le trinôme $P(x) = ax^2 + bx + c$ dans le cas où le discriminant Δ est strictement positif. Cela signifie que P admet deux racines x_1 et x_2 .

Question 2 (3 minutes) : Rappeler les expressions de x_1 et x_2 en fonction de a, b, c et Δ .

Question 3 (15 minutes) : Calculer $x = x_1 + x_2$ et $p = x_1 \times x_2$. Simplifier les expressions.

Théorème. Somme et produit des racines

Si le polynôme $P(x) = ax^2 + bx + c$ admet deux racines x_1 et x_2 , alors :

$$x_1 + x_2 = -\frac{b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$

Démonstration : Le théorème a été démontré par vos calculs précédents.

Question 4 (15 minutes): Application du théorème précédent

Pour chacun des polynômes suivants donner la somme et le produit de ses racines sans déterminer les racines.

$$P(x) = x^2 - 7x - 14;$$
 $Q(x) = 4x^2 + 15x - 93;$ $R(x) = 11x^2 + 5x + 1793$

Question 5 (15 minutes):

Dans le manuel traiter l'exercice 52 page 77 puis étudier la correction (suite du document)

Question 6 (15 minutes):

Dans le manuel traiter l'exercice 53 page 77 puis étudier la correction (suite du document)

Retour au problème introductif

Question 7 (10 minutes):

- (a) Déterminer les coefficients b et c du trinôme $P(x) = x^2 + bx + c$ pour que 13 soit la somme de ces racines et que 20 soit leur produit. ¹.
- **(b)** Déterminer les racines de P(x). (C'est à dire résoudre l'équation P(x) = 0.)
- (c) Donner deux nombres dont la somme est 13 et le produit 20.

^{1.} il a été choisi de prendre a=1 pour simplifier les calculs

Question finale (correction au retour en classe):

- [1] Déterminer, les dimensions d'un rectangle de périmètre 12 et d'aire 7 (s'il existe).
- [2] Déterminer, les dimensions d'un rectangle de périmètre 8 et d'aire 13 (s'il existe).

Pour se détendre et se cultiver aussi

Correction de l'exercice 63 page 77

Pour résoudre ces inéquations on suivra toujours la même méthode :

- (a) recherche des racines du trinôme
- (b) construction du tableau de signe

On peut préférer la factorisation à l'utilisation du théorème du cours, c'est parfois plus long, parfois plus court comme dans la question (b).

(c) lecture de l'ensemble solution dans le tableau

Question (a)

$$(I_a) 2x^2 - 3x - 2 \geqslant 0$$

Racines du polynôme $P(x) = 2x^2 - 3x - 2$:

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$$

 $\Delta>0$ donc P(x) a deux racines $\mathbf{\hat{z}}$: $x_1=-\frac{1}{2}$ et $x_2=2$.

On sait que P(x) est du signe de a=2 sauf entre les racines.

On en déduit le tableau :

On on acadic to tak	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
x	$-\infty$		$-\frac{1}{2}$		2		$+\infty$
signe de $P(x)$		+	0	_	0	+	

$$S_{I_a} = \left[-\infty; -\frac{1}{2} \right] \cup [2; +\infty[$$

Question (b)

$$(I_b) 5x^2 - 6x \geqslant 0$$

Racines du polynôme $P(x) = 5x^2 - 6x$:

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times 5 \times 0 = 36$$

 $\Delta > 0$ donc P(x) a deux racines $3: x_1 = 0$ et $x_2 = \frac{6}{5}$.

On sait que P(x) est du signe de a=5 sauf entre les racines.

On en déduit le tableau :

x	$-\infty$		0		$\frac{6}{5}$		$+\infty$
signe de $P(x)$		+	0	_	0	+	

$$S_{I_b} = \left] 0; \frac{6}{5} \right[$$

- 2. Dans ce document le calcul n'est pas détaillé, mais en évaluation, il faut le faire
- 3. Dans ce document le calcul n'est pas détaillé, mais en évaluation, il faut le faire

Question (c)

$$(I_c)$$
 $-3x^2 + 30x - 75 \geqslant 0$

Racines du polynôme $P(x) = -3x^2 + 30x - 75$:

$$\Delta = b^2 - 4ac = 30^2 - 4 \times (-3) \times (-75) = 0$$

 $\Delta=0$ donc P(x) a une racine ⁴ : $x_0=5$.

On sait que P(x) est du signe de a=-3 .

On en déduit le tableau :

x	$-\infty$		5		$+\infty$
signe de $P(x)$		_	0	_	

$$S_{I_c} = \{5\}$$

Question (d)

$$(I_d) \qquad -x^2 + 6x - 9 \geqslant 0$$

Racines du polynôme $P(x) = -x^2 + 6x - 9$:

$$\Delta = b^2 - 4ac = 60^2 - 4 \times (-1) \times (-9) = 0$$

 $\Delta = 0$ donc P(x) a une racine ⁵ : $x_0 = 3$.

On sait que P(x) est du signe de a=-1 .

On en déduit le tableau :

x	$-\infty$		3		$+\infty$
signe de $P(x)$		_	0	_	

$$S_{I_c} = \{3\}$$

Cet exercice ne présente pas tous les cas, pour être plus complet, il faut étudier l'inéquation suivante en plus des exemples du cours (*correction page suivante*) :

$$-3x^2 - 6x - 75 \geqslant 0$$

^{4.} Dans ce document le calcul n'est pas détaillé, mais en évaluation, il faut le faire

^{5.} Dans ce document le calcul n'est pas détaillé, mais en évaluation, il faut le faire

(I)
$$-3x^2 - 6x - 75 \geqslant 0$$

Racines du polynôme $P(x) = -3x^2 - 6x - 75$:

$$\Delta = b^2 - 4ac = (-6)^2 - 4 \times (-3) \times (-75) = -864$$

 $\Delta < 0$ donc P(x) n'a aucune racine réelle. On sait que P(x) est du signe de a = -3 .

On en déduit le tableau :

on on acadic to tableau i					
x	$-\infty$ $+\infty$,			
signe de $P(x)$	_				

$$S_{I_c} = \emptyset$$

Correction des questions du cours

Question 1:

La somme est x + y on a donc la première équation : x + y = 13.

Le produit est $x \times y$, on a donc la seconde équation xy = 20.

Voici le système recherché :

$$\begin{cases} x+y = 13 \\ xy = 20 \end{cases}$$

Question 2 : Si le discriminant est strictement positif , on sait que le polynôme a pour racines :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Question 3:

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{-b - \sqrt{\Delta} + \left(-b + \sqrt{\Delta}\right)}{2a}$$

$$= \frac{-b - \sqrt{\Delta} - b + \sqrt{\Delta}}{2a}$$

$$= \frac{-2b}{2a}$$

$$x_1 + x_2 = \frac{-b}{a}$$

et

$$x_1 x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{\left(-b - \sqrt{\Delta}\right) \left(-b + \sqrt{\Delta}\right)}{2a \times 2a}$$

$$= \frac{(-b)^2 - \left(\sqrt{\Delta}\right)^2}{4a^2}$$

$$= \frac{b^2 - \Delta}{4a^2}$$

$$= \frac{b^2 - (b^2 - 4ac)}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$x_1 x_2 = \frac{c}{a}$$

Remarque : Il y a une méthode plus astucieuse et plus simple utilisant la factorisation de P(x)

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

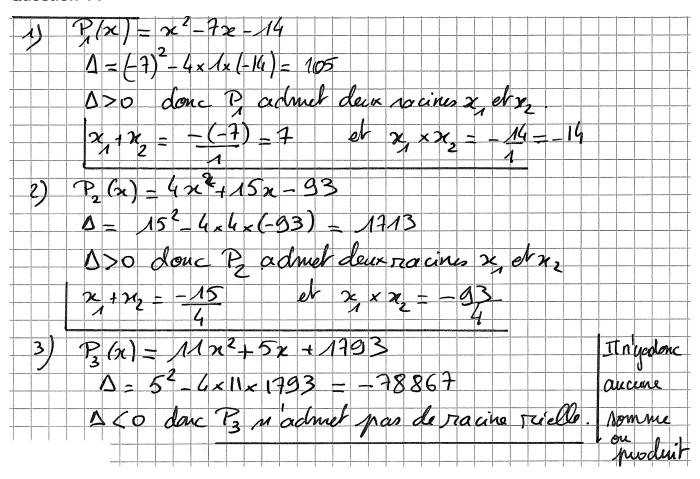
$$= a(x^{2} - x_{1}x - x_{2}x + x_{1}x_{2})$$

$$= ax^{2} - a(x_{1} + x_{2})x + ax_{1}x_{2}$$

on peut donc identifier:

$$b = -a(x_1 + x_2);$$
 $c = ax_1x_2$

Question 4:



Question 5:52 page 77

$$g(x) = 3x^2 + x - 2$$

(a) $g(-1) = 3 \times (-1)^2 + (-1) - 2 = 3 - 1 - 2 = 0$

donc -1 est une racine de g

(b) le discriminant de g est :

 $\Delta=25$ donc g admet deux racines -1 et r dont le produit est :

$$-1 \times r = \frac{c}{a}$$
$$= \frac{-2}{3}$$

(c) On en déduit que

$$r = \frac{-2}{3} \times -1 = \frac{2}{3}$$

Question 6:53 page 77

$$f(x) = 3x^2 - 13x - 10$$

(a) $f(5) = 3 \times 5^2 - 13 \times 5 - 10 = 75 - 65 - 10 = 0$

donc 5 est une racine de f.

(b) le discriminant de f est :

$$\Delta = (-13)^2 - 4 \times 3 \times (-10) = 289$$

 $\Delta > 0$ donc f admet deux racines : 5 et r. Leur somme est :

$$5 + r = \frac{-b}{a}$$
$$= \frac{-(-13)}{3}$$
$$= \frac{13}{3}$$

(c) On en déduit que :

$$r = \frac{13}{3} - 5 = \frac{13 - 15}{3} = \frac{-2}{3}$$

Question 7:

(a) On cherche un trinôme $P(ax)=ax^2+bx+c$ qui a pour coefficient a=1, dont la somme des racines est : $\frac{-b}{a}=13$, dont le produit des racines est : $\frac{c}{a}=20$.

On en déduit que -b = 13 et donc que b = -13.

On en déduit que c=20.

donc
$$P(x) = x^2 - 13x + 20$$

(b) Racines de

$$P(x) = x^2 - 13x + 20$$

Discriminant:

$$Delta = (-13)^2 - 4 \times 1 \times 20 = 89$$

 $\Delta > 0$ dont P admet deux racines ⁶:

$$x_1 = \frac{13 - \sqrt{89}}{2}; \quad x_2 = \frac{13 + \sqrt{89}}{2}$$

(c) Les deux racines de P détermnées dans la question précédente répond au problème.

^{6.} Dans ce document le calcul n'est pas détaillé, mais en évaluation, il faut le faire